Image
10.33826/ijmras/v06i10.5

Green Synthesis and Antibacterial Study of Zinc Oxide (Zno) Nanoparticles

Abstract

With this work, the environmentally friendly manufacturing of ZnO NPs utilizing Catharanthus roseus leaves has been assessed. Here, a rapid and environmentally friendly method for producing zinc oxide nanoparticles is described: using Catharanthus roseus leaf extract as a stabilizing and reducing agent. Different methods, including UV-visible spectroscopy, Fourier Transmission Spectroscopy (FTIR), and X-ray Diffraction (XRD) were used to analyze the green synthesized ZnO NPs. The size, morphology, and crystallinity of the synthesized ZnO nanoparticles were investigated via X-ray diffraction technique. It was found that ZnO possesses a crystallinity structure with a 24.0 nm average size. The designed molecules exhibited good antibacterial activities against gram-positive (Bacillus subtilis) gram-negative (Escherichia coli) and (Pseudomonas aeruginosa) bacterial strains. In the present work, (NE-SMS-OA-01) have been synthesized by utilizing two two-step reaction by exhibited significant antibacterial activity.

Keywords
  • Catharanthus Roseus Leaves,
  • X-Ray Diffraction Technique,
  • Fourier Transmission Spectroscopy,
  • UV-Visible Spectroscopy,
  • ZnO Nps
References
  • • Abdullah, A., & Mohammed, A. (2019). Scanning Electron Microscopy (SEM): A Review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania 1–9.
  • • Abdullah, J. A. A., Salah Eddine, L., Abderrhmane, B., Alonso González, M.,Guerrero, A., & Romero, A. (2020). Green synthesis and characterization of zinc oxide nanoparticles by Pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustainable Chemistry and Pharmacy, 17, 100280-100287.
  • • Alagiri, M., & Hamid, S. B. A. (2014). Green synthesis of α-Fe2O3 nanoparticles for photocatalytic application. Journal of Materials Science: Materials in Electronics, 25(8), 3572-3577.
  • • Aqel, A., El-Nour, K. M. M. A., Ammar, R. A. A., & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis, and characterization. Arabian Journal of Chemistry, 5(1), 1–23.
  • • Bhuiyan, M. S. H., Miah, M. Y., Paul, S. C., Aka, T. Das, Saha, O., Rahaman, M. M.,Sharif, M. J. I., Habiba, O., & Ashaduzzaman, M. (2020). Green synthesis of zinc oxide nanoparticle using Caricapapaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon, 6(8), e04603.
  • • Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A... & Iqbal, M. (2019). Green synthesis of zinc oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye Journal of Materials Research and Technology, 8(6), 6115-6124.
  • • Bunaciu, A. A., & Aboul-enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications Critical Reviews in Analytical Chemistry. Analytical Chemistry, 45, 289–299.
  • • Catherine Berthomieu, & Hienerwadel Rainer. (2013). Fourier transform infrared (FTIR) spectroscopy. Photosynthesis Research, 101, 157– 170.
  • • Chetna Dhand, A., Neeraj Dwivedi, B., Xian Jun Loh, C., Alice Ng Jie Ying, A., Kumar, N., Verma, ad Roger W. Beuerman, ae R. L. and S., &
  • • Ramakrishna. (2013). Methods and Strategies for the Synthesis of Diverse Nanoparticles and their Applications: A Comprehensive Overview. RSC Advances, 1, 1– 100.
  • • characterization of zinc oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Journal of bioscience and bioengineering, 127(2), 241-245.
  • • Devi, H. S., Boda, M. A., Shah, M. A., Parveen, S., & Wani, A. H. (2019). Green synthesis of zinc oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Processing and Synthesis, 8(1), 38-45.
  • • zinc oxide nanoparticles using aqueous leaf extract of Thymbraspicata and evaluation of their antibacterial, antibiofilm, and antioxidant activity. Inorganic and Nano-Metal Chemistry, 51(5), 683–692.
  • • Georgakilas,V., Perman, J. A., Tucek,J., & Zboril, R. (2015). Broad family of carbon nano allotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115(11), 4744-4822.
  • • Ghorbanpour, M., Manika, K., & Varma, A. (Eds.). (2017). Nanoscience and plant- soil systems. Springer International Publishing.
  • • Horikoshi, S., & Serpone, N. (2013). Introduction to nanoparticles. Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, 1–24.
  • • Hussain, A. F. (2019). UV-Visible spectrometry. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania 1–6.
  • • Issa, B., Obaidat, I. M., Albiss, B. A., & Haik, Y. (2013). Magnetic nanoparticles:
  • • surface effects and properties related to biomedicine applications.
  • • International Journal ofMolecular Sciences, 14(11), 21266-21305.
  • • Jadoun, S., Arif, R., Kumari, N., Rajesh, J., & Meena, K. (2020). Green synthesis of nanoparticles using plant extracts: a review. Environmental Chemistry Letters,19,355-374.
  • • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications, and toxicities. Arabian Journal of Chemistry, 12(7), 908-931.
  • • Klabunde, K. J., & Richards, R. M. (Eds.). (2009). Nanoscale materials in chemistry.
  • • Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi, and plants. Journal of Nanomedicine & Nanotechnology, 5(5),
  • • Siqueira, J. R., & Oliveira, O. N. (2017). Carbon-Based Nanomaterials. 233–249
  • • Subedi, S. K. (1985). An introduction to nanotechnology and its implications. Himalayan Physics, 5, 78-81.
  • • Tiwari, D. K., Behari, J., & Sen, P. (2008). Application of Nanoparticles in Waste Water Treatment. Cit.
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How to Cite

SIDRA GHAFOOR, KUSHWAH, M. S. ., & SHEHZADI, N. . (2023). Green Synthesis and Antibacterial Study of Zinc Oxide (Zno) Nanoparticles. International Journal of Multidisciplinary Research and Studies, 6(10), 01–32. https://doi.org/10.33826/ijmras/v06i10.5

Download Citation

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.