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ABSTRACT 

Accurate annotation of protein function is vital to understanding life at the molecular lev-

el, but automated annotation of functions is challenging. We here demonstrate the 

mix of a way for protein function annotation that uses network information to predict the 

biological processes a protein is involved in, with a sequence-based prediction method. 

The combined function prediction relies on co-expression networks and combines the 

network-based prediction method BMRF with the sequence-based prediction method 

Argot2. the mixture shows significantly improved performance compared to every of the 

methods separately, additionally as compared to BlastGO. The approach was applied to 

predict biological processes for the proteomes of rice, barrel clover, poplar, soybean, 

and tomato. The novel function predictions are available at www.ab.wur.nl/bmrf. Analy-

sis of the relationships between sequence similarity and predicted function similarity 

identifies numerous cases of divergence of biological processes within which proteins 

are involved, despite sequence similarity. this means that the combination of network-

based and sequence-based function prediction is useful towards the analysis of evolu-

tionary relationships. samples of potential divergence are identified for various biological 

processes, notably for processes associated with cell development, regulation, and re-

sponse to a chemical stimulus. Such divergence in organic process annotation for pro-

teins with similar sequences should be taken into consideration when analyzing plant 

gene and genome evolution. 
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1. Introduction 

The amount of plant genome data grows disproportional to the number of accessi-

ble experimental data on these genomes [1], [2], [3], [4], [5]. to attach this ever-

increasing amount of genome data to plant biology, factor annotation followed by func-

tion annotation is imperative. for instance, the identification of candidate genes in-

volved in a very trait of interest greatly benefits from gene function annotation [6]. within 

the context of the study of genome evolution, gene function annotations are necessary 

to enable comparison between sets of genes with different evolutionary histories, e.g. 

those retained vs. those lost after duplication [7]. To annotate gene or protein function, 

experimental data, if available, will be wont to annotate gene or protein function. How-

ever, the scarcity of experimental data highlights the attractiveness of computational 

approaches to help in gene function annotation [8]. Indeed, newly sequenced genomes 

are generally amid a function annotation that heavily relies on computational predic-

tions. Such automated annotations are delivered by a spread of approaches, often with-

out much knowledge about their reliability. For studying plant genomes and plant ge-

nome evolution, reliable function annotation is, therefore, a significant challenge. 

 

One way to annotate proteins without experimental data is to infer function from se-

quence data [3]. The actual standard to capture function annotation today is that 

the Gene Ontology (GO), particularly, the Molecular Function (MF) and process (BP) 

sub-ontologies [9]. MF describes activities, like catalytic or binding activities, that occur 

at the molecular level, whereas BP describes a series of events accomplished by one or 

more ordered assemblies of molecular functions [9]. Compared to MF, terms within 

the BP ontology are generally related to more conceptual levels of function; BP terms 

describe the execution of 1 or more molecular function instances working together to 

accomplish a specific biological objective. The prediction of BP terms can depend up-

on the cellular and organismal context [10]. Therefore, BP terms tend to be poorly pre-

dicted by methods supported sequence similarity only, like BLAST [10], [11]. The relia-

bility of BP predictions increases with advanced approaches that employ, e.g., phyloge-

netic frameworks [12], [13] or network data like protein-protein interactions [14]. 
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We recently developed a protein function prediction method for BP terms called Bayesi-

an Markov Random Field (BMRF) [15], which uses network data as input. In BMRF, 

each protein is represented as a node within the network, and connections within 

the network indicate functional relationships between proteins. Networks may 

be supported, e.g., protein-protein interactions or co-expression data. BMRF uses exist-

ing BP annotations for proteins within the network to infer biological processes for un-

annotated proteins therein network. To do so, BMRF uses a statistical model describing 

how likely neighbors are to participate within the same BP; this constitutes the Markov 

Random Field. Existing BP annotations are used as “seed” or “training” data, provid-

ing a group of initial labels for the Markov Random Field. Parameters within 

the statistical model are trained employing a Bayesian approach by performing the sim-

ultaneous estimation of the model parameters and prediction of protein functions. Im-

portantly, BMRF can transfer functional information beyond direct interactions. There-

fore, it can generate function predictions for proteins that are only linked with other pro-

teins with unknown functions. 

 

In the Critical Assessment of Function Annotations (CAFA) protein function prediction 

challenge [10], BMRF obtained particularly good performance in humans (first place) 

and Arabidopsis (second place) for BP term prediction [10]. In these species, BMRF 

performance benefits from the wealth of existing function annotation, i.e. experimental 

data. due to its dependence on training data, function annotation for species with more 

sparse function annotation is challenging for BMRF. to enhance the prediction perfor-

mance in sparsely annotated species, we present here a method to mix BMRF with the 

sequence-based function prediction method Argot2 [16]. Argot2 was among the top-

performing sequence-based algorithms within the CAFA category “eukaryotic BP”. In its 

computational approach, Argot2 is complementary to BMRF, because it's purely se-

quence-based. 

 

We demonstrate that a mix of Argot2 and BMRF encompasses a markedly better func-
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tion prediction performance than each method separately. This integrated method was 

applied to predict BP terms for proteins in five plant species, Medicago truncatula (bar-

rel clover), cultivated rice (rice), Western balsam poplar (poplar), soja (soybean), and 

Solanum Lycopersicum (tomato), using microarray co-expression networks as input. 

Numerous new proteins were related to specific biological processes, like seed devel-

opment in rice or organic process in Medicago. By comparison between sequence di-

vergence and predicted function divergence, numerous cases of putative neo-

functionalization involving various biological processes were identified. This new meth-

od and also the resulting set of predicted gene functions are going to be of great value 

in capitalizing on the massive amount of plant genome data that's currently being gen-

erated for the study of the evolution of genome and gene function. 

 

2. Results 

2.1. Method development and evaluation 

We previously developed the protein function prediction method BMRF and used it to 

annotate protein function in cress [17]. This method relies, besides on network data, on 

existing function annotation as input. For Arabidopsis, we demonstrated that the quanti-

ty of accessible annotation (training) data was sufficient to attain a decent prediction 

performance [17]. However, for crop species, much less annotation data is out there as 

input. to extend the function prediction performance for plants with sparse experimental 

data, we explored combining BMRF with the sequence-based method Argot2. 

 

Argot2 and BMRF were tested separately (standalone setting) or in two combinations 

(Fig. 1). Performance assessment focussed on rice, the crop with the most im-

portant amount of annotation data available: 415 proteins with experimental evidence 

for a organic process. The rice network used as input for BMRF was obtained from a 

mixture of microarray-based co-expression data, data from STRING [18] and Function-

alNet [19] (Table S1). Of the 415 proteins with experimental evidence, 394 were pre-

sent within the network and were used for validation of predicted functions. 
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Fig. 1. Strategies for predicting protein function. BMRF (A and C) and Argot2 (B) 

were utilized in a standalone setting or in two different combinations (D and E). Combin-

ing BMRF and Argot2 was done by combining the results of every of the 2 methods (D), 

and by using Argot2 predictions as input for BMRF (E). The rice network is indicated in 

red, the Arabidopsis network in black and interspecies connections in grey dashed lines. 

Sequence-based input is indicated by a DNA-helix symbol. (For interpretation of the ref-

erences to paint during this figure legend, the reader is spoken the net version of this 

text.) 

 

Function prediction performance was assessed on the premise of cross-validation, leav-
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ing out randomly selected proteins with known function and comparing the predictions 

with those data. the world under the receiver operator graphical record (AUC) 

was accustomed compare the performance of the predictions that come as ordered lists 

of predicted proteins per process. within the standalone setting (Fig. 1A and B) with rice 

sequence and network data, BMRF and Argot2 both have an occasional performance, 

with AUC (average ± standard deviation) of 0.6 ± 0.12 and 0.67 ± 0.11, respectively 

(Tables 1 and S2). These values are considerably not up to the AUC previously ob-

tained with BMRF for Arabidopsis (0.75) [17] thanks to the tiny amount of coaching data 

(annotated gene functions) that's available for rice. Assuming information from Ara-

bidopsis would improve the performance of rice protein function predictions in BMRF, 

we connected proteins in an available Arabidopsis network (Table S1) to proteins within 

the rice network supported sequence similarity using BLAST. With this rice-Arabidopsis 

interspecies network additionally to the networks of both species separately (Fig. 1C), 

BMRF performed slightly better than Argot2 (AUC 0.70 ± 0.12). The precise value of the 

BLAST E-value cut-off wont to create the interspecies network failed to influence the 

performance of BMRF (data not shown). 

 

          

Table 1. Prediction performance for rice protein functions of assorted combinations of 

methods and input datasets. 

 

Network Methods AUC  

(i) Rice only BMRF 0.60 (0.12) 
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(ii) Rice only Argot2 0.67 (0.11) 

(iii) Arabidopsis and rice combined BMRF 0.70 (0.12) 

(iv) Arabidopsis and rice combined Blast2GO 0.72 (0.13) 

(v) Arabidopsis and rice combined Argot2 + BMRF 0.71 (0.12) 

(vi) Arabidopsis and rice combined Argot2 → BMRF 0.83 (0.15) 

 

a).Methods analyzed were BMRF, Argot2, Blast2GO, Argot2 + BMRF (rank-sum), and 

Argot2 → BMRF (seeding). Rice network was used separately (rice only), or it had 

been connected to an Arabidopsis network supported sequence similarity (combined). 

 

b).The area under the curve; mean (standard deviation). 

 

Both methods use complementary information about biological processes (network in-

put for BMRF, sequence input for Argot2). Therefore, we tested combining the 2. Argot2 

and BMRF are often combined in multiple ways. We used an easy rank-based approach 

to predict biological processes by ordering Argot2 and BMRF results separate-

ly then combining their ranks to provide a final rank (Fig. 1D). This integration was per-

formed for every process separately by sorting the proteins supported their score for 

that process and using the sum of the ranks induced by this ordering for BMRF and for 

Argot2. This integration of Argot2 and BMRF failed to improve results compared to 

standalone BMRF (Table 1). The performance was markedly improved, however, by 

generating initial predictions with Argot2 and supplying these to BMRF as training data 

(seed data; Fig. 1E). During this integration method, the initial labeling of proteins within 

the network (i.e. the seed data for BMRF) was supported the Argot2 predictions. Argot2 

uses an algorithm-specific score to rank its results and requires a threshold for such a 

score. To assess the influence of various thresholds on the performance of BMRF, 

BMRF was seeded with 5 different output sets of Argot2 (Table S3). The most effec-

tive performance was achieved with the default threshold of 5. 

 

The results above indicate that our integrated method performed markedly better than 
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each of the 2 methods separately. As an extra assessment of performance, we predict-

ed annotations with the often-used method Blast2GO [21]. The resulting AUC of 

Blast2GO was 0.72 ± 0.13, and also the AUC of the combined Argot2-BMRF predictions 

was 0.83 ± 0.15 which is significantly (p < 10−15; Mann–Whitney U) better than 

Blast2GO (Fig. 2A). the little number of experimentally verified annotations (true posi-

tives) and a high number of annotated proteins (true negatives) could introduce 

skew within the cross-validation sets, resulting in a bias within the AUC performance 

assessment [22]. The F-score (harmonic mean of precision and recall) doesn't suffer 

from this skew and therefore the final prediction performance was therefore also as-

sessed with the most F-score (Fmax-score). In agreement with the AUC evaluation, the 

Fmax-scores of Argot2-seeded BMRF (0.56 ± 0.24) were significantly better (p < 10−15; 

Mann–Whitney U) than Blast2GO (0.51 ± 0.23). Visual inspection of a histogram of AUC 

values and of Fmax-score values for various BP terms in numerous cross-validation 

runs confirms the performance difference between the combined Argot2-BMRF predic-

tions and Blast2GO (Fig. 2B and C). 

 

Fig. 2. Performance assessment of function prediction on rice proteins. (A) Receiver 

operator graphical record showing 1-specificity vs. sensitivity of the predictions of Ar-

got2-seeded BMRF and Blast2GO. Specificity and sensitivity were averaged over all 
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cross-validation runs. Dots indicate evenly spaced intervals of the underlying prediction 

score, the road represents a whole curve. Performance is summarized as AUC which is 

that the area under these curves. (B) Histogram of AUC values per GO term of 

each cross-validation run calculated for Argot2-seeded BMRF and Blast2GO. (C) Histo-

gram of Fmax values per GO term of each cross-validation run calculated for Argot2 

seeding BMRF and Blast2GO. 

 

To obtain independent validation additionally to the cross-validation performed above, 

the Argot2-seeded BMRF predictions were compared to annotations available within 

the Oryzabase database [23] which weren't present in our computer file (71 proteins). 

The AUC of 0.88 ± 0.13 we obtained was just like the AUC obtained within the cross-

validation, confirming the performance assessment. Overall, the performance evaluation 

demonstrates that Argot2-seeded BMRF is a good thanks to predict BP protein function 

in sparsely annotated plant genomes. 

 

2.2. Application to crop species 

Argot2-seeded BMRF using PlaNet [24] co-expression networks as input (Table S4) 

was applied to predict BP protein functions in a very selection of model and crop plants 

comprising O. Sativa (rice), M. truncatula (barrel clover), G. max (soybean), P. tricho-

carpa (poplar) and S. Lycopersicum (tomato). The posterior probability of a pro-

tein related to a specific GO term was estimated for all GO terms and every 

one proteins within the network. so as to answer an issue like “does protein X per-

form process Y”, a finite set of predictions is required. to get such a finite set, an F-

score-based cut-off was applied to the posterior probability. As Arabidopsis has the 

best coverage of experimental data, this cut-off was adjusted per GO term by compar-

ing Arabidopsis predictions with available experimental data, as previously described 

[17]: for every GO term, a threshold on the posterior probability was defined that leads 

to the most F-score for that GO term. All predictions are available online 

(http://www.ab.wur.nl/bmrf/). the net resource is queried for predictions of proteins or for 

GO terms of interest, and therefore the results is downloaded in bulk. Que-
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ries is supported protein identifiers, organic process GO identifiers or text descriptors of 

biological processes (Fig. 3). By default, only the foremost detailed Gene Ontology 

terms (leave terms within the GO structure) are displayed, so as to concentrate on the 

foremost relevant predictions. 

       

 

Fig. 3. Use case scenarios for the online interface. Argot2-seeded BMRF results are of-

ten queried in two ways. (A) Protein identifiers as query input. The result consists of 

predicted GO terms for every protein. (B) GO terms (or GO term descriptions) as query 

input. The result consists of predicted protein identifiers for the relevant GO term(s) and 

associated posterior probabilities (prob). 

 

The fraction of proteins out of the whole proteome annotated with a minimum 

of one organic process (annotation coverage) varies considerably between the species: 

rice shows the best annotation coverage (99%), followed by poplar (77%). Soybean 

(43%) and barrel clover (39%) show lower coverage. Tomato has rock bottom coverage 

(12%). Such differences in annotation coverage can have a minimum of two reasons. 

First, although for each organic process every protein within the input network will have 

an associated posterior probability, these probabilities are often below the F-score-
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based cut-off. this suggests that not necessarily every protein within the input net-

work are annotated. additionally, because BMRF only predicts functions for pro-

teins within the input network, the utmost possible annotation coverage is restrict-

ed by the quantity of proteins within the respective network. This limit is reflected by the 

tomato annotation coverage, because the tomato network is that the smallest with 4355 

proteins. With exception of soybean, the annotation coverage correlates with the quanti-

ty of proteins within the respective network (Table S4). 

 

To investigate differences between available gene function annotation data and Argot2-

seeded BMRF, we compared the results with existing protein function predictions from 

the reference genomes of barrel clover [25], poplar [26], tomato [27], rice [28], and soy-

bean [29]. aside from tomato, the present annotations have much lower coverage than 

the above-mentioned coverage obtained by Argot2-seeded BMRF (Table S5). the 

rise of the share of variety of proteins with a minimum of one organic process predicted 

by our approach varied per species. the share increase ranged from ∼60% for rice 

(24,160 in existing annotation vs. 38,998 in our annotation) to over 100% for poplar 

(13,682 vs. 32,119). 

To complement the above-presented results on coverage, which focused on the ques-

tion of what number proteins obtain a minimum of one annotation, we also com-

pared the quantity of predicted functions per protein. the common number of GO terms 

per protein within the available experimental annotation data for Arabidopsis is 4.4. As 

additional experimental evidence is meant to accumulate, this number should 

be thought to be a boundary of the common complex quantity of GO terms a protein 

should be annotated with. Existing sets of predicted annotations for the plant species 

included here are considerably below this bound, whereas our set of predictions is 

comparatively near this bound (Table S5). Note that during this assessment, only the 

foremost granular level of the Gene Ontology is taken under consideration (i.e. only 

leaf-node terms are considered, and no more general parent terms). For those pro-

teins that existing annotations are available, these annotations are to an over-

sized extent a subset of what we predict (∼80% of the prevailing annotations is addi-
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tionally predicted by Argot2-seeded BMRF; data not shown). the upper annotation cov-

erage together with the nice prediction performance demonstrates the appreciable add-

ed value of the Argot2-seeded BMRF strategy for obtaining gene function annotations. 

 

2.3. Predicted protein functions: showcases 

To illustrate the potential of the functions predicted, we screened all predictions for new-

ly annotated biological processes that are considered particularly relevant for the indi-

vidual species (Table S6). Biological processes considered comprise seed development 

for rice and soybean; biological process for barrel clover; fruit development for tomato; 

and lignin related processes for poplar. Inspection of the chosen predictions shows that 

the functions of proteins tend to become more specific: broadly defined functions are 

replaced by or augmented with more specific biological processes. for instance, the rice 

protein LOC_Os10g38080 was previously annotated with bodily struc-

ture morphogenesis and is annotated by Argot2-seeded BMRF with seed (coat) devel-

opment. LOC_Os10g38080 may be a subtilisin homolog which in keeping with available 

RNAseq data is expressed amongst other reproductive organs and seeds [28]. As addi-

tional evidence for the Argot2-seeded BMRF prediction, in Arabidopsis subtilisin and 

related proteases are involved in reproductive structure development [30]. An example 

of an annotation for a previously completely annotated protein is LOC_Os05g02520, a 

cupin domain-containing protein, which was annotated by Argot2-seeded BMRF with 

seed maturation. 

 

2.4. Divergence and conservation of biological processes in ortholog groups 

the set of function predictions delivered above allows us to match function annotation 

between different plants, a task that's much less easily performed with existing annota-

tions that are derived from various methods which have much lower coverage than our 

approach. Such a comparison between orthologous genes in several plants allows for 

assessment of the bounds of orthology-based function prediction, and to investi-

gate gene function evolution. 
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To characterize ortholog groups with functional predictions that differ from expecta-

tions supported sequence similarity, orthologs and paralogs were identified with or-

thoMCL [31], leading to 25,347 groups (Table S7). Group members that no functions 

were predicted were removed. To assess the similarity of function predictions within 

ortholog groups, the mean functional distance within each ortholog group (dubbed ‘inner 

group distance’) was calculated (see Section 4). just in case the anticipated biological 

processes in such a gaggle are different despite high sequence similarity, this is able 

to be indicative of evolutionary divergence by, e.g., neo-functionalization. to spot such 

cases, groups with a minimum of four different organisms (6073) were ranked by their 

largest inner group distance and therefore the most divergent groups (n = 100) were se-

lected. In those groups, biological processes that were significantly overrepresented 

(more present than randomly expected) were obtained. a spread of biological processes 

was found (Supp. Figure S1), indicating the widespread occurrence of changes in bio-

logical processes proteins are involved in. Most prominent are processes associated 

with cell development, regulation, and response to a chemical stimulus. For the latter 

group, the biological processes involved are shown in Fig. 4A. Among the top-ranking 

groups (with highest ‘inner group distance’) involved in those processes, we chose as 

an example a phosphatase with existing experimental annotation in Arabidopsis, PUR-

PLE ACID PHOSPHATASE 26 (PAP26). PAP26 plays a task in phosphate metabolism 

[32] and phosphate starvation [32] in Arabidopsis. the bulk of the proteins with function 

predictions within the orthologous group (five out of seven) are indeed predicted by Ar-

got2-seeded BMRF to be involved in phosphate metabolism or the response to phos-

phate starvation. However, additional function predictions differ. Populus and soybean 

proteins are predominantly annotated with cell death-related terms; Arabidopsis with 

pollination and pollen germination processes; tomato with DNA repair and rice with mi-

crotubule cytoskeleton organization. This diversity in function isn't reflected by orthology 

predictions and phylogenetic relationships of the group members (Fig. 4B and C). Inde-

pendent expression data indicate that Arabidopsis PAP26 is expressed in an exceed-

ingly housekeeping-like manner, but the expression pattern varies between paralogs in 

other species, e.g. soybean, and to lesser extent orthologs, e.g. between tomato and 
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soybean (Fig. 4D). the various expression patterns give credibility to the variation in 

function predictions of Argot2-seeded BMRF. this means that PAP26, although its mo-

lecular function presumably is invariant, is involved in various biological processes in 

various plant species. More generally, the analysis of functional divergence presented 

here highlights the potential of using our set of predicted gene functions for giant scale 

comparisons between various plant species. 

 

             

 

Fig. 4. Comparison between sequence divergence and functional divergence. (A) Over-

view of the foremost frequent GO terms within the top 100 most functionally divergent 

ortholog groups that are represented by “response to chemical stimulus” (Figure S1). (B 

and C) Phylogenetic relations of Arabidopsis PURPLE ACID PHOSPHATASE 26 

orthologs. Trees contain Arabidopsis (ath), soybean (GMA), tomato (sly), Populus (ptr), 

and rice (OSA) PAP26 orthologs. (B) Unrooted phylogenetic tree supported sequence 
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data. The tree was calculated with 1000 bootstraps. Confidence values are indicated at 

the branches in percent. (C) Distance tree supported our function predictions. Missing 

identifiers weren't a part of} the co-expression network and are therefore not part of the 

functional distance tree. (D) Expression ranking of PURPLE ACID PHOSPHATASE 26 

orthologs and paralogs in numerous tissue clusters. The heatmap color represents a 

mean percentile rank of normalized expression studies aggregated by averaging to 

10 tissue clusters (Table S8). Missing data is indicated in white. an summary of the ag-

gregated studies is accessible in Table S8. (For interpretation of the references to 

paint during this figure legend, the reader is mentioned the net version of this text.) 

 

3. Discussion 

Finding associations between proteins and biological processes could be a major chal-

lenge in non-model plants. Most experimental studies are aimed towards model organ-

isms; hence experiment-based function annotation is sparse within the remainder of se-

quenced plant genomes. High-throughput experiments to define protein functions are 

overall less informative than those provided by low-throughput experiments [33]. More-

over, the experimental setup in large-scale approaches might restrict the sort of function 

annotation which will be obtained. An example is that the characterization of overex-

pressed rice genes in Arabidopsis [34] to infer function. Here, the matter is that 

the process of a protein is commonly absolute to the local environment or a particu-

lar condition and a special (plant) environment might change the result. Another large 

scale analysis of gene families in Arabidopsis used prokaryotic gene information to pre-

dict function [35]. This semi-manual approach yielded good results for conserved gene 

families; however, gene families with low conservation weren't covered. 

 

Several computational approaches to protein function annotation exist, albeit mostly not 

targeted to plants, or model plant species only [36]. An integrated plat-

form like Phytozome [2] provides a standardized set of Gene Ontology annotations for 

various plant species and hence overcomes the above-mentioned problem that annota-

tions related to genomes are obtained by various methods. However, Phytozome only 
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provides sequence-based predictions. The recently published MORPH algorithm ranked 

genes for his or her membership of Arabidopsis and tomato pathways, supported a 

group of known genes from the target pathway, a set of expression profiles, and interac-

tion and metabolic networks [37]. Approaches like PlaNet construct net-

works supported expression data [24] but such networks don't directly result in gene 

function annotation. Similarly, a recently presented text mining approach generated 

networks in Arabidopsis and not gene function annotations [38]. Here we offer a struc-

tured approach to extract gene function information from networks and mix that with se-

quence-based information. 

 

The combination of sequence- and network-based function prediction obtained by seed-

ing BMRF with Argot2, offers a big benefit over applying these methods separately. We 

validated the rice method and demonstrated greatly improved performance compared to 

every of the methods separately and compared to Blast2GO. This performance as-

sessment was performed using two complementary indicators, AUC and F-score, which 

both gave consistent results. Existing annotations provided for the plant genomes to 

which we applied our method are obtained by various, mostly sequence-based ap-

proaches. a transparent description of the methods and input file is usual-

ly lacking, resulting in the chance of error propagation and circular reasoning [3], [39]. 

Our approach has the advantage of applying a regular method to the assort-

ed genomes. Moreover, for several proteins that to this point weren't related 

to any organic process, we now provide predictions of biological processes. Neverthe-

less, the mixture of Argot2 and BMRF is indirectly constrained by the experimental data 

in databases like UniProt [40] or PFAM [41], and by the proteins covered in available 

networks. it'll however be straightforward to integrate newly available da-

tasets like additional co-expression networks or novel gene function annotations within 

the framework presented. counting on the supply of a completely unique network or an-

notation data, we indeed arrange to update our resource. an extra limitation of our cur-

rent approach is that the structure of the Gene Ontology isn't taken under considera-

tion within the prediction process. Most existing computational methods for gene func-
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tion prediction suffer from this drawback. it's feasible to create a collection of GO term 

predictions per the GO-structure [42] and that we commit to apply this method to Ar-

got2-seeded BMRF predictions within the future. 

 

BMRF output consists of a listing of probabilities for every gene to be related 

to each process. this enables to rank proteins so as of their likelihood of association 

with a organic process of interest. However, it also can be important to possess a finite 

set of predictions. to produce that, we applied a cut-off to the chanc-

es, supported Arabidopsis, the sole species from which enough data was availa-

ble. it's difficult to assess how valid the appliance of this cut-off in other plant species is. 

However, the typical number of predictions per protein that we obtain in each of the 

species supported the cut-off that was applied is near the observed average for Ara-

bidopsis, giving some credibility to the present cut-off. For one species, tomato, the 

amount of predicted BP terms per protein is somewhat over the experimentally ob-

served number for Arabidopsis. Hence, argot2-seeded BMRF possibly suffers from 

overprediction during this case. this might be caused by the upper density (number of 

interactions compared to the quantity of proteins) of the tomato network. However, in 

any case, the chances related to the predictions allow narrowing down the prediction 

results to the foremost reliable ones, if so desired. 

 

With the consistent annotation of multiple plant genomes that we performed, the relation 

between homology and organic process predictions are often analyzed. Ortholog 

groups with divergent functions indicated cases where conclusions supported sequence 

similarity could be inappropriate. Such inappropriate conclusions is also more common 

than generally acknowledged. Indeed, as recently noted within the context of comparing 

putative orthologs between species, counting on sequence similarity alone might identi-

fy an ortholog with the right molecular function, but will more often than not fail to 

spot an ortholog that participates within the correct organic process [43]. during 

a comparison of organic phenomenon patterns between different plant species, the 

quantity of times that the homolog with the foremost similar pattern of expression (“ex-



    INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY 
    RESEARCH AND STUDIES VOLUME03ISSUE06 

 

IJMRAS-ISSN2640-7272, website:- www.ijmras.com Page 18 

press log”) wasn't also the foremost similar at the sequence level, ranging between 15% 

and 50% [44]. Similarly, about 1/2 a set of Arabidopsis loss-of-function mutants had only 

low or moderate phenotypic similarity with mutants of putative orthologs in tomato, rice, 

or maize [45]. Large-scale evolutionary comparisons between plant species, as an ex-

ample, geared toward identifying patterns within the retention of duplicated genes [46], 

[47], or functional biases in single-copy genes [7], are currently per-

formed supported function annotations obtained using sequence similarity. Such studies 

will enjoy the gene annotations presented here, which overcome the constraints of pure-

ly sequence-based annotation of gene functions. 

 

In the example of PAP26 homologs, homology captures the molecular function, but at 

the process level, there's divergence. Our integrated sequence- and network-based 

function annotation method allows us to predict such divergent biological processes. 

Differences in expression between the various PAP26 homologs in several species pro-

vide additional evidence for our function predictions. More generally, the results 

on process divergence are in line with the concept that evolution acts specifically by 

“tinkering” with genes, coopting available components of a genome for brand spanking 

new processes. 

 

The combination of sequence-based and network-based predictions could be a huge 

improvement for sparsely annotated plant genomes. With the arrival of RNA-seq [48] 

coexpression network-based protein function prediction can become a preferred meth-

od. Combined with additional analysis, like genome-wide association studies (GWAS), 

potential candidate genes for traits-of-interest might be identified more reliably. Such 

candidate genes are of great help in applications associated with plant breeding. the 

power to associate unannotated proteins to particular biological processes will spark 

experimental work and be essential for the advancement of the understanding of gene 

function in plant genome evolution. 

 

4. Materials and methods 
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4.1. Function prediction methods and their integration 

BMRF uses network data as input. Each protein is represented as a node within 

the network, and connections within the network indicate functional relationships be-

tween proteins. A statistical model (Markov Random Field) describes how the involve-

ment of a protein during a particular BP influences the probability that its neigh-

bors within the network also are involved in this BP. The parameters within 

the statistical model describe for every BP how strongly neighbors influence one anoth-

er. Parameter values are trained employing a Bayesian approach by performing the 

simultaneous estimation of the model parameters and prediction of protein functions. 

This strategy needs a collection of known protein functions because the initial labeling 

of the network. Argot2 could be a purely sequence-based prediction method, using 

searches of the UniProt and Pfam databases as input. to mix these two methods, two 

strategies were applied. within the first integration method, for every organic process, 

ranks for the various proteins were obtained from both BMRF and Argot2, by ordering 

the proteins supported their score for that process. These ranks were added to get a 

final ranking, which was used because the prediction score for that organic pro-

cess. during a second integration strategy, initial predictions were generated with Ar-

got2. These were supplied to BMRF as training data, meaning that the initial labeling of 

the nodes within the network was supported the Argot2 predictions. 

 

4.2. Sequence and domain data 

Sequence data for Arabidopsis, rice, soybean, and M. truncatula were obtained from the 

Phytozome database v8.0 [2]. Poplar sequence data were downloaded from the JGI 

(ftp://ftp.jgi-psf.org/pub/JGI_data/Poplar/annotation/v1.1), annotation version 1.1. Toma-

to sequence v2.4 and annotation v2.3 data [27] were retrieved from the SGN network 

(http://www.solgenomics.net). Arabidopsis Interpro domains were retrieved from TAIR10 

[49]. Domains of transcript isoforms were merged into one set per gene. 

 

4.3. Function annotation data 

Annotations from the Gene Ontology project, version 1.1418 [9], and from Gramene 
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[50], were used as input for training and cross-validation. Annotations from Oryzabase 

version 4 [23] were used as an independent validation set. Only genes that no annota-

tion was available within the data from the Gene Ontology project were used for valida-

tion. altogether cases, only process (BP) terms with evidence codes IDA (inferred from 

direct assay), IGI (genetic interaction), and IMP (mutant phenotype) were used. 

 

4.4. Network data 

Co-expression networks supported microarray data for Arabidopsis, rice, G. max, M. 

truncatula, and poplar were obtained from PlaNet [24]. For tomato, a recently published 

microarray-based co-expression network [51] was used. The probe of the tomato co-

expression network was obtained from Affymetrix (http://www.affymetrix.com) and 

mapped with BLAST v2.2.26 [11] to the tomato protein sequences. Further network data 

for Arabidopsis and rice was obtained from FunctionalNet (http://www.functionalnet.org/) 

[19] and STRING [18]. Arabidopsis yeast-two-hybrid data were acquired from the litera-

ture [52]. The rice-Arabidopsis interspecies network was generated by using BLAST 

(cut-off on E-value of 1e−4). BMRF requires all proteins to be a part of the input net-

work. Thus, proteins not contained within the input network were re-

moved. altogether cases, the longest isoform of alternatively spliced variants was used. 

 

4.5. Validation setup 

Performance assessment was performed with rice. HMMER v3 (http://hmmer.org/) 

search against PFAM [41] and BLAST [11] alignment against UniProt [53] were wont 

to generate the input for Argot2 [16]. within the context of the validation setup, all rice 

proteins were far from the UniProt database to avoid Argot2 using information from 

those proteins. 

 

For comparison, sequence similarity-based annotation was disbursed with Blast2GO 

[21]. Rice protein sequences were queried against the non-redundant a part 

of GenBank (NR) [54], using an E-value cut-off of 1e−4. within the context of the valida-

tion setup, hits to monocot proteins in NR were far from the BLAST results before sup-
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plying them to Blast2GO. 

 

Prediction runs of various methods and network combinations were assessed with 100 

cross-validation runs. In each run, randomly, a subset (n = 200) of proteins was cho-

sen and also the annotation was removed (masked). for each run, predicted functions 

were compared with the masked ones. Only process terms with a minimum of three 

masked proteins were utilized in the performance assessment to permit for sufficient 

statistics. within the performance assessment, negative cases consisted of gene-BP as-

sociations that weren't annotated intrinsically within the experimental data. 

 

The performance was assessed by the realm under the receiver operating graphical 

record (AUC) and therefore the F-score. The AUC is that the area under the curve of 1-

specificity vs. sensitivity and is adequate to the probability that a classifier will rank a 

randomly chosen positive instance on top of a randomly chosen negative one [20]. 

Specificity is that the fraction of proteins experimentally known to not perform a given 

function that's indeed not predicted to try to to so, whereas sensitivity (or recall) is that 

the fraction of proteins experimentally known to perform a given function that's indeed 

predicted to try and do so. F-score relies on the precision-recall (precision vs. sensitivi-

ty) curve. Precision is that the fraction of proteins predicted to perform a given func-

tion that's indeed experimentally known to try to to so. The F-score 

is capable the mean of precision and recall, and therefore the maximum value of the F-

score (Fmax-score) was used for every organic process. 

 

To obtain a finite set of predictions, functions of a protein were assigned by using an F-

score-based cut-off. The F-score was calculated per GO term and its maximum (Fmax-

score), calculated with Arabidopsis data as previously described [17], was wont to set a 

cut-off on the posterior probability. the brink obtained with Arabidopsis data 

was employed in the opposite species because, in those species, too few annotations 

are available to get a species-specific threshold. All performance measures were calcu-

lated with the R-package ROCR [55] and custom R-scripts. 
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4.6. Application setup 

Function annotations predicted for barrel clover, poplar, rice, soybean, and tomato were 

compared with existing predictions in terms of coverage of proteins and therefore 

the number of predicted functions per protein. Barrel clover, poplar, and 

rice process predictions were obtained from the official genome annotations version 

Mt3.5v5 [25], v1.1 [26], and v7.0 [28], respectively. Soybean annotation was obtained 

from Phytozome [2]. Tomato function annotation data was extracted from the ITAG an-

notation v2.3 [27]. 

 

To determine the entire number of proteins and also the total number of GO 

terms that annotations were obtained, the annotation of every protein was expanded by 

including the parent GO terms of all assigned GO terms. For the calculation of the quan-

tity of annotations per protein, only the leaf-terms of the Gene Ontology were included. 

 

4.7. Evolutionary and functional distance calculation 

Groups of orthologs were predicted with OrthoMCL [31]. To calculate functional diver-

gence, BMRF posterior probabilities for every protein were interpreted as vectors. The 

Euclidian distance for every combination of proteins within a gaggle of orthologs was 

calculated. The mean of distances within a bunch (inner group distance) was wont 

to rank groups of orthologs. For the PAP26 example, only groups with existing experi-

mental annotation in Arabidopsis were taken into consideration. The PAP26 tree was 

estimated with RaxML version 7.2.8-ALPHA [56] using the PROTGAMMAJJTF substitu-

tion model and 1000 bootstraps. Expression data for PAP26 was obtained from the 

AtGenExpress developmental set [57]; publicly available RNA-seq datasets from tomato 

(S. Lycopersicum cv. Heinz 1706; data SRA049915) were retrieved from the SRA data-

base (http://www.ncbi.nlm.nih.gov/sra). Reads were mapped with GSNAP [58] against 

the tomato reference genome (v. 2.40, Sato et al. [27]) and also the expression made 

up our minds with cufflinks [59] with default parameters. Soybean expression data was 

obtained from SoyBase [60]. Rice expression data were obtained from the Rice Ge-
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nome Annotation Project (http://rice.plantbiology.msu.edu/). All expression experiment 

data were z-score normalized and percentile ranked to facilitate comparison. Replicates 

were merged by averaging over the expression for every gene. 
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