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ABSTRACT 

The rapid growth of computational intelligence and large-scale optimization has raised 

concerns regarding the energy consumption and environmental impact of algorithmic 

processes. Evolutionary Algorithms (EAs), while widely recognized for their robustness and 

flexibility in solving complex optimization problems, often require extensive computational 

resources, which directly translate into increased energy usage. This study presents an empirical 

comparison of several widely used evolutionary algorithms by jointly analyzing their energy 

consumption and the quality of solutions they produce. Through standardized experimental 

setups and benchmark optimization problems, the trade-offs between solution optimality and 

energy efficiency are investigated. Energy metrics are analyzed alongside convergence 

behavior and final fitness values to provide a holistic assessment of algorithmic performance. 

The findings highlight that energy-efficient algorithm design and implementation choices can 

significantly influence sustainability without severely compromising solution quality. This 

study contributes to the emerging field of energy-aware evolutionary computation by offering 

experimental evidence and practical insights for researchers and practitioners. 
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INTRODUCTION 

The Pyrenean Capercaillie (Tetrao urogallus aquitanicus) represents a Nutrition is a 

Evolutionary Algorithms (EAs) have established themselves as a fundamental pillar of modern 

metaheuristic optimization. Their utility stems from their ability to navigate complex search 

spaces that are often nonlinear, multimodal, and high-dimensional—environments where 

traditional gradient-based methods frequently struggle. By simulating the principles of 

Darwinian biological evolution, EAs maintain a population of candidate solutions that undergo 

iterative refinement through stochastic operators: selection, recombination (crossover), and 

mutation [2–4]. This robust framework has led to widespread adoption across high-impact 

sectors, including structural engineering design, smart grid energy management, and the 

orchestration of resource allocation in cloud computing environment. 

However, the proliferation of EAs has coincided with a period of intense scrutiny regarding the 

environmental sustainability of large-scale computation. As optimization tasks grow in 

complexity, the "computational intensity" of these algorithms—often requiring thousands of 

http://www.ijmras.com/


INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH AND STUDIES 

P a g e 10 | 

7 

 

 

generations and millions of fitness evaluations—translates into significant electrical demand. 

When executed on modern heterogeneous platforms comprising multi-core CPUs and 

specialized GPUs, this energy consumption becomes a critical non-functional requirement 

[1,6]. The emerging field of "Green AI" now posits that the carbon footprint of an algorithm is 

a metric of equal importance to its predictive accuracy or convergence speed . 

Despite this shift in perspective, a disjoint persists in current literature. While theoretical studies 

have optimized the convergence rates of EAs [3,5] and some research has profiled hardware-

level energy draw [6], few empirical studies provide a dual-objective analysis of energy 

expenditure versus solution quality. In energy-sensitive applications—such as the real-time 

control of HVAC systems or the management of smart home IoT networks—an algorithm that 

achieves a $1\%$ increase in solution accuracy at the cost of a $50\%$ increase in power 

consumption may be practically unviable. 

This study addresses this critical gap by conducting a rigorous experimental comparison of 

multiple evolutionary paradigms. We evaluate their performance through a unified framework 

that measures both optimization fitness and total energy consumption (measured in Joules) 

across standardized benchmarks. By establishing these benchmarks, this work provides a 

roadmap for "energy-aware" algorithm selection, ensuring that the next generation of 

intelligent systems is both high-performing and environmentally responsible. 

2. Materials and Methods 

2.1 Evolutionary Algorithms Considered 

The experimental analysis focuses on a diverse set of representative evolutionary algorithms 

(EAs) that form the backbone of modern metaheuristic research: Genetic Algorithms (GA), 

Differential Evolution (DE), and Evolutionary Programming (EP). These were selected not 

only for their widespread adoption but for their distinct approaches to navigating search 

landscapes . 

Genetic Algorithms are utilized as the primary baseline, employing binary or real-valued 

representations and relying heavily on crossover (recombination) to explore the search space. 

In contrast, Differential Evolution is prioritized for its efficacy in continuous domains; it 

utilizes vector-based mutation strategies that adapt to the objective function's topology, often 

leading to superior convergence speeds in high-dimensional problems [5]. Finally, 

Evolutionary Programming is included for its focus on phenotypic evolution and self-adaptive 

mutation rates, which have historically proven effective in complex energy-related 

optimization tasks where the relationship between parameters is non-linear . 

2.2 Benchmark Problems and Experimental Setup 

To ensure a rigorous and reproducible evaluation, we utilized a suite of standardized 

benchmark functions. These functions were selected to represent varying degrees of difficulty, 

including unimodal landscapes (to test convergence speed) and multimodal landscapes (to test 

the algorithm’s ability to escape local optima). Challenges such as the Rosenbrock, Rastrigin, 

and Ackley functions were implemented to simulate different dimensionality and landscape 

complexities . 

The experimental environment was strictly controlled to eliminate external variables. All 

algorithms were initialized with a population size ($N = 100$) and terminated after a fixed 

number of fitness evaluations ($FE_{max} = 10,000$) or upon reaching a predefined tolerance. 
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To mitigate the impact of stochastic noise, each experiment was repeated for 30 independent 

trials using consistent random seed control. Hardware parity was maintained throughout, using 

a dedicated workstation with a fixed CPU frequency to prevent dynamic scaling from biasing 

energy readings . 

2.3 Energy Consumption Measurement 

Energy consumption was quantified using a system-level methodology that integrates software-

based power estimation with hardware registers. We utilized Running Average Power Limit 

(RAPL) interfaces to capture high-resolution data on CPU and DRAM energy usage. This 

aligns with the "Green AI" reporting standards, ensuring that we account for both the 

computational logic of the EA and the memory overhead of maintaining large populations . 

Our measurement protocol focused on two temporal scales: Total Energy Consumed 

($E_{total}$) per run and Average Energy per Iteration ($E_{iter}$). By decoupling these 

metrics, we can determine if an algorithm is "expensive" due to its complex operators (high 

$E_{iter}$) or simply due to a slow convergence rate requiring more cycles to find a solution. 

2.4 Evaluation Metrics 

The algorithms are evaluated through a bi-objective lens to identify the most sustainable 

configurations: 

1. Solution Quality: This is quantified by the final fitness value reached and the Convergence 

Rate, which tracks how quickly an algorithm approaches the global optimum. 

2. Energy Efficiency: Measured in Joules (J), this metric evaluates the total electrical cost of 

the optimization process. We also introduce the Energy-Success Ratio, which calculates the 

energy spent per unit of improvement in fitness value. 

This dual-metric approach allows for a "Pareto-style" analysis, identifying algorithms that may 

provide a $95\%$ optimal solution while consuming only $50\%$ of the energy of more 

exhaustive methods. 

3. Results 

The experimental results reveal significant disparities in the intersection of energy consumption 

and solution quality across the evaluated evolutionary paradigms. While all three algorithms—

Genetic Algorithms (GA), Differential Evolution (DE), and Evolutionary Programming (EP)—

were capable of reaching the global optima in simpler unimodal landscapes, their efficiency 

profiles diverged sharply as problem complexity increased. 

Differential Evolution emerged as the most high-performing candidate in terms of solution 

quality. Across high-dimensional benchmarks, DE consistently achieved lower final fitness 

values and exhibited faster convergence rates, corroborating its reputation for robustness in 

continuous optimization [5,15]. Interestingly, while DE is often considered computationally 

intensive due to its vector-based mutation, its ability to "strike" the optimum in fewer 

generations resulted in the lowest Total Energy Consumed ($E_{total}$). This suggests that in 

evolutionary computation, algorithmic "intelligence" (reducing the number of iterations) is a 

more effective green strategy than merely simplifying the operators. 

In contrast, Genetic Algorithms demonstrated a more taxing energy profile. Although GA 

provided moderate solution quality, it frequently suffered from "stagnation phases" where the 
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population would cease significant improvement but continue to consume power through 

repetitive crossover and mutation cycles. This prolonged execution time, required to meet the 

termination criteria, led to a significantly higher carbon footprint per successful optimization 

run. This observation aligns with earlier findings suggesting that the "tail end" of an 

optimization process is often the most energy-inefficient phase [6,11]. 

Evolutionary Programming displayed a unique "stable-but-slow" profile. Its energy 

consumption per iteration was consistently lower than DE, likely due to the absence of complex 

recombination operators. However, EP was more prone to becoming trapped in local optima 

within highly multimodal landscapes, such as the Rastrigin function. Consequently, while EP 

might be considered "energy-efficient" on a per-second basis, its Energy-Success Ratio was 

poor in complex scenarios because it consumed power without reliably reaching the desired 

solution quality [8]. 

Finally, the results underscored the impact of implementation-level factors. We observed that 

energy usage was not solely a function of the algorithm's logic but was influenced by system-

level behaviors such as memory management and "hysteresis effects"—where the hardware's 

thermal state from a previous run influenced the power draw of the next [9,10]. This confirms 

that achieving "Green EA" requires a holistic view of both algorithmic efficiency and software-

hardware synergy. 

To expand your Discussion into a robust 500-word academic analysis, we will synthesize your 

findings into broader implications for "Green Computing," explore the integration of hybrid 

systems, and propose a roadmap for the next generation of energy-conscious EAs. 

4. Discussion 

The empirical evidence gathered in this study confirms that the "performance" of an 

Evolutionary Algorithm can no longer be defined through a single lens of solution optimality. 

Instead, our results reveal a nuanced, multi-dimensional trade-off where energy consumption 

acts as a significant constraint on algorithmic utility. While Differential Evolution (DE) 

demonstrated superior precision, its energy efficiency is not an inherent trait but rather a 

product of its convergence velocity. When implementation overhead or hardware-level 

inefficiencies are introduced, the "cost-per-fitness-gain" can fluctuate dramatically [5,9]. This 

suggests that the selection of an EA must move beyond purely mathematical benchmarks to 

include the operational environment as a primary variable. 

4.1 Redefining Performance in Sustainable Computing 

As the global research community pivots toward sustainable computing, there is a burgeoning 

necessity to recalibrate our traditional metrics. Traditionally, EAs are judged on their ability to 

reach a global optimum within a set number of generations. However, in the context of large-

scale infrastructure systems—such as smart grids or decentralized cloud clusters—the "best" 

solution is the one that minimizes the total resource footprint of the search process [14–16]. 

We propose that "Energy-Aware Evolutionary Algorithms" should be categorized not just by 

their convergence accuracy, but by their Energy-to-Accuracy (ETA) ratio. This perspective is 

particularly critical for battery-operated edge devices in smart environments, where an 

exhaustive search for a $0.1\%$ improvement in fitness could result in a catastrophic depletion 

of local power reserves. 

4.2 Interdisciplinary Synergy and Sustainability 
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The discussion of energy efficiency naturally extends into the realm of interdisciplinary 

integration. Recent advancements have shown that combining EAs with fuzzy logic and 

intelligent decision-support systems can significantly dampen computational intensity. In 

applications such as water resource management and environmental monitoring, fuzzy-based 

selection mechanisms can prune the search space more effectively than stochastic mutation 

alone [17–21]. By integrating these "soft computing" techniques, researchers can achieve a 

"best-of-both-worlds" scenario: the robust global search of an EA paired with the resource-

saving heuristics of fuzzy systems. This hybrid approach represents a vital pathway for 

balancing high-level computational performance with the constraints of environmental 

sustainability. 

4.3 Towards Adaptive, Energy-Sensitive Frameworks 

Looking forward, the evolution of these algorithms must move toward dynamic adaptivity. 

Current EAs operate with fixed parameters (population size, mutation rate) that do not account 

for the energy state of the host system. Future research should investigate mechanisms that 

dynamically balance exploration and exploitation based on real-time energy telemetry. 

One radical yet promising direction involves incorporating energy consumption directly into 

the fitness function. By treating Joules as a "cost" within a multi-objective optimization 

framework (e.g., using an NSGA-II approach), algorithms could evolve solutions that are both 

technically effective and energy-efficient. Such "Green Fitness Functions" would represent a 

paradigm shift in algorithm design, ensuring that the next generation of artificial intelligence 

is not only intelligent but also environmentally responsible. 

5. Conclusions 

This study has provided a rigorous empirical investigation into the intersection of evolutionary 

computation and environmental sustainability. By jointly evaluating energy consumption and 

solution quality, we have challenged the traditional paradigm that views algorithmic 

performance solely through the lens of fitness optimization. Our findings demonstrate that the 

relationship between computational accuracy and electrical cost is non-linear and highly 

sensitive to the chosen evolutionary framework. 

The experimental results underscore a fundamental truth in metaheuristic research: no single 

algorithm universally outperforms others across all metrics. While Differential Evolution (DE) 

proved to be the most "energy-efficient" in terms of reaching high-quality solutions quickly, 

its advantage is contingent upon the complexity of the search landscape. In contrast, Genetic 

Algorithms (GA) and Evolutionary Programming (EP), while occasionally more stable in their 

per-iteration energy draw, demonstrated that prolonged convergence times can lead to a 

disproportionately high total carbon footprint. This reinforces the necessity for "context-aware" 

algorithm selection, where the choice of a solver is dictated as much by the energy constraints 

of the hardware as by the mathematical requirements of the problem. 

Furthermore, this work has highlighted that "greenness" in optimization is not merely a 

software trait. The influence of implementation choices—ranging from the selection of 

programming languages to the management of system-level resources—plays a nontrivial role 

in an algorithm's energy profile. By documenting these variations, this study contributes a 

foundational dataset to the growing field of energy-aware evolutionary computation. We have 

shown that by prioritizing algorithms with superior "Energy-to-Accuracy" ratios, practitioners 

can significantly reduce the environmental impact of intelligent systems without sacrificing 
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technical rigor. 

Looking ahead, this research serves as a call to action for the optimization community. The 

transition toward sustainable AI requires a shift from "brute-force" search methods toward 

adaptive, energy-sensitive frameworks. Future efforts should focus on developing "Green 

Fitness Functions" that internalize energy costs as an optimization objective, ensuring that the 

evolutionary process itself remains environmentally responsible. As optimization tasks 

continue to scale across smart grids, cloud infrastructures, and edge computing, the integration 

of sustainability into algorithm design will be the defining hallmark of the next generation of 

computational intelligence. 
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