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Abstract 

Current erasure codes rely heavily on data 

nodes to generate the parity nodes. The 

greater the tolerance for error, and the more 

"If we can increase the number of parity 

nodes, we may increase our chances of 

restoring the original data. As the number 

of parity nodes grows, the storage overhead 

will rise, and the repair burden on data 

nodes will rise as well, because data nodes 

are queried often to help in the repair of 

parity nodes. If a global parity node fails in 

LRC [25, 26], for instance, all data nodes 

must be fixed. It will take more time to 

process read requests for data nodes as a 

result of the "increasing demands on the 

network's data nodes. An application where 

frequent data retrievals are unwelcome is a 

Google search. 

In an effort to cut down on waiting time, 

"produces both data and parity nodes, the 

latter of which can take over part of the 

repair work normally done by the former. In 

other words, the number of data nodes that 

may be accessed remains constant, 

regardless of whether or not a parity node is 

functioning. It would appear that parity 

nodes incur additional storage costs. 

Generating parity nodes using parity nodes 

can assist decrease access latency without 

raising or decreasing the storage 

requirements if the architecture is sound ", 

as we shall show in the following sections 

[27, 28], above your head. 

In this research, we'll compare and contrast 

the effectiveness of "Hierarchical Tree 

Structure Code (HTSC) and High Failure-

tolerant Hierarchical Tree Structure Code 

(FH HTSC)." 
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INTRODUCTION 

Searching, "social networking, and e-commerce have all seen significant increases in popularity 

over the previous decade. Every day, we produce a massive amount of digital data. Research 

and business alike are grappling with the difficulty of designing cost-effective storage systems. 

The data explosion has necessitated the creation of large-scale distributed storage systems. The 

Hadoop Distributed File System (HDFS) [2] and Windows Azure Storage (WAS) [3] are just 
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a few examples. Using these storage systems, huge data, high speed computing, and cloud-

scale applications may be met with great reliability and ubiquity. It is common for a large 

distributed storage system to be developed utilising a large number of inexpensive and unstable 

storage devices, and these individual nodes are susceptible to failures. There are substantial 

advantages to these systems in terms of scalability, yet failure is the rule, not the exception. [1] 

As a result, we must overcome frequent system failures and guarantee that these systems" are 

reliable and resilient. 

 

LITERATURE REVIEW 

In large-scale distributed storage systems, redundancy is provided using replication or erasure 

coding, which provides a high level of failure protection. 

GFS ensures that data may "be accessed reliably by distributing the information among three 

separate storage nodes. Google's frequent read requirements can easily be accommodated by 

this simple replication approach [6]. Because of the large storage requirements for a given 

degree of fault tolerance, replication" maintains data availability and combats data losses in the 

event of node failures. 

Files of fixed size M can "be divided into k parts (sometimes referred to as "k nodes"), each of 

size M, and encoded into n encoded nodes for use in generic erasure code systems. In 

comparison to replication, the storage requirements for a given degree of dependability can be 

significantly reduced using the erasure" coding approach. Reed Solomon (RS) codes, for 

example, are among the most widely used and most efficient storage codes because of their 

Maximum-Distance-Separable (MDS) characteristic [4]. 

It is an element of a "standard code that has a codeword. There are n nodes in an MDS codeword, 

and any k of those nodes can be used to reassemble the entire text. In addition, we refer to a 

codeword as a systematic code if it comprises original data nodes. There are k original data 

nodes and an equal number of" n-k parity "nodes in any feasible MDS codeword [5]. Nodes of a 

codeword are typically kept on multiple storage devices in different locations to avoid failures 

due to common" reasons. 

Any three of the six nodes in a (6,3) "MDS codeword may decode all of the information in the 

codeword, as depicted in Fig. 1.1. Due to the uncoded nature of d1 through d3, the code is 

logical. Large-scale distributed storage systems using coding often use a code with a 

predetermined set of (n, k) parameters and a specified size for each codeword to store its data, 

making it easier to maintain and operate. There are two types of RS codes that are utilised in 

HDFS and GFS II: (14,10) for Face-HDFS book's and (9,6) for GFS II [7, 8]. For actual large-

scale distributed storage systems, this means a codeword comprises several files of fixed total 

size. We can better investigate" the storage system's characteristics because of the constant 

coding rate. 
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 STATEMENT OF THE PROBLEM 

User experience may be "considerably affected by the latency of access in distributed storage 

systems. Erase codes have long been known to be more reliable than replication at the same 

storage cost, but it has only recently been shown that coding " may minimise access latency [9]. 

Chinese researchers proved the "first time that codes can minimise queueing delay [10]. After 

that, a great deal of study has focused on the Redundant Scheme (RedS), which indicates that 

sending redundant requests to storage systems may minimise latency. While part of the work 

[11] is theoretical, others [12] use trace-driven simulations to test the findings. To learn more 

about how duplicate queries can assist minimise latency, see Shah et al. [13]. In [14, 15], RedS 

and RanS latency-cost tradeoffs will be examined. Coding surpasses replication in terms of 

delay under the same storage cost, according " to [16]. 

Despite these attempts, "while evaluating latency performance, certain important practical 

requirements of distributed storage systems " are overlooked. 

When users request files of "varying sizes from a codeword, [17, 18] can only handle cases 

where each request reads the whole content of the codeword. No comparison will be made 

between replication and coding when a request to the replication system may want files from 

more than one data node at the same time, as will be done in the case of single node reads in 

[19]. A more generalised version of the" second situation is more in line with current large-scale 

storage systems. 

Most earlier studies [20, "21, 22] assume pure ex-ponential service times, but our real-world 

observations on Amazon S3 show that this assumption" falls well short of the real-world reality, 

as demonstrated by Liang et al. 

Repairing failures is a common task in distributed storage systems, in addition to the typical 

data retrieval [23]. GFS, Amazon "S3, and WAS are three examples of distributed storage 

systems that rely on a large number of faulty hardware. Recovery procedures require roughly 

180TB per day of data transfer between racks in Facebook HDFS, and there are multiple times 

of high repair rate each day [24]. Increased frequency of read requests will certainly lead to an 

increase in access latency under the same conditions since there are fewer nodes to store the 

data requested by a read request. No data is lost when a storage node fails and repair requests 

are given higher priority than read/write operations to ensure that no data is lost. Because repair 

requests are prioritised above read requests, the access times for such requests may be 

significantly impacted. As" a result, in this study, we will investigate the influence of repair 

requests on read request access latency. 
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Objective of the Study 

 To find the best "methods for direct readings in order to minimise " latency. 

Research Questions 

 Which one is the "best methods for direct readings in order to minimise" latency? 

 

RESEARCH METHODOLOGY 

Using erasure codes and replications in distributed storage systems is one way to deal with 

system failures [29]. Codes often used in practise are generally systematic codes, which implies 

each codeword contains a duplicate of the original data. It is also possible to use erasure coding 

in Windows "Azure storage (WAS) systems, but only when a file reaches a specific size (e.g., 

3GB). If you're looking for just a portion of the file, the storage nodes will be able to get it from 

one of the codeword's huge files, which are often extremely large in practise (we call those 

requests direct reads) [31, 32, 33]. Requests for k-access reads, in which each request must read 

the whole file in a codeword and must access at least k nodes, are another type of requests. A 

distributed storage system's latencies will vary depending on the number of direct and k-access 

reads that are performed. To our knowledge, this is the first time that direct readings have been" 

explored in detail in any previous research [30]. 

Latency performance is "crucial in distributed storage systems, and some studies claim that 

codes can minimise latency in data centres, while many other strategies have been proposed to 

reduce latency in distributed storage" systems.. Previous research has mostly ignored direct 

readings and only looked at k-access accesses. There hasn't been any research done on how 

RedS can speed up direct readings. "While RedS sends requests to all n nodes for each k-access 

read, the Random Scheme (RanS) only randomly sends requests to those k nodes. Compared 

to RanS, RedS requires a larger investment of time and resources. When it comes to practical 

distributed storage systems, RanS is a popular choice since it is easy to implement and does 

not require additional" information or resources. 

 

RESEARCH DESIGN 

Redundant Request Technique (RedS) is a lately popular read scheme for (n, k) MDS-coded 

storage systems [34, 35, 36]. "No matter how many files a read request requests in a codeword, 

RedS splits it into n jobs and sends them to each of the n nodes. When k nodes out of n have 

finished providing their services, the request is considered complete, and the remaining n k 

jobs are promptly terminated. 

We've developed a solution based on RedS that can manage requests for files of varying sizes 

while also reducing access latency. Flexible " Redundant Scheme is what we call it (FRedS). 

 

DATA ANALYSIS 

Generally speaking, "In order to save your data using HTSC(D) or FH HTSC, you will need to 

combine your files into a single large one of size M, say 1 to 3 GB, and then divide it into K 

parts (D, h). The fixed size M may be calculated using the available storage space at each node 

and the parameters of HTSC(D, h) or FH FH HTSC. (D, h). Users are often only interested in 
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a subset of a "file's uncoded systematic component, which is kept in one of the K nodes. Earlier 

studies assumed that readers would desire access to the entire contents of a "Considering that 

every bit of information is now stored in the K-tree, the use of a codeword to describe it is a 

major shift. However, this oversimplifies things rather than reflecting reality. In WAS, for 

instance, erasure coding is available only for files beyond a certain size threshold (say, 3GB) 

[31]. Most people only need a small percentage of the 3GB available, so it's not surprising that 

it's a waste. This conforms to the HTSC's planned functionality (D, h). For this reason, we will 

be concentrating on read requests from customers that are only interested in a subset of the 

information stored in one of the K data nodes "inferences drawn from this research. 

 

CONCLUSION 

Generally speaking, "In order to save your data using HTSC(D) or FH HTSC, you will need to 

combine your files into a single large one of size M, say 1 to 3 GB, and then divide it into K 

parts (D, h). The fixed size M may be calculated using the available storage space at each node 

and the parameters of HTSC(D, h) or FH FH HTSC. (D, h). Users are often only interested in 

a subset of a "file's uncoded systematic component, which is kept in one of the K nodes. Earlier 

studies assumed that readers would desire access to the entire contents of a "Considering that 

every bit of information is now stored in the K-tree, the use of a codeword to describe it is a 

major shift. However, this oversimplifies things rather than reflecting reality. In WAS, for 

instance, erasure coding is available only for files beyond a certain size threshold (say, 3GB) 

[31]. Most people only need a small percentage of the 3GB available, so it's not surprising that 

it's a waste. This conforms to the HTSC's planned functionality (D, h). For this reason, we will 

be concentrating on read requests from customers that are only interested in a subset of the 

information stored in one of the K data nodes "inferences drawn from this research.  

 

LIMITATIONS OF THE STUDY 

As the nodes and connections "must be protected, it is challenging to guarantee effective 

security in distributed systems. Data and messages might be lost in the network as they travel 

between nodes. In comparison to a single user system, the database related to distributed 

systems is highly complex and difficult to handle. In the event that all of the distributed system's 

nodes attempt to " communicate data at once, the network may get overloaded. 
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