THERMOELECTRIC POWER FACTOR FOR VARIOUS TEMPERATURE GRA-DIENTS IN NANO-CRYSTALLINE COMPOSITES

Manu Mitra

VOLUME01ISSUE03

ABSRACT


Nano-crystalline are polycrystalline material that are very tiny particles with the dimen-sion less than 100 nanometers. Nano-crystalline material can be estimated using x-ray diffraction. In this paper; thermoelectric power factor for Nano-crystalline graphs are plotted and compared with various temperature gradients (10K, 100K and 200K) such as seeback coefficient, electrical conductivity, power factor, subband plot, transmission plot, poten-tial energy – centerline, electron density – centerline, current density – centerline, density of states – centerline and areal current density; values for graphs are also noted for further study.

KEYWORDS


Nano-Crystalline, Nanotechnology, Nano-crystalline composites, Thermoelectric effect.

REFERENCES


1 Mukherjee, A., & Mishra, R. (2001). Superplasticity. Encyclopedia of Materials: Science and Technology, 8977-8981. doi:10.1016/b0-08-043152-6/01618-1.

2 Ma, X., & Zhu, Y. (2016). Deformation Twinning in Nano-crystalline Met-als.Reference Module in Materials Science and Materials Engineering. doi:10.1016/b978-0-12-803581-8.03990-4.

3 Guo, H., Xu, H., & Gong, S. (2014). Thermal barrier coatings. Developments in High Temperature Corrosion and Protection of Materials, 476-491. doi:10.1533/9781845694258.2.476.

4 Mukherjee, A., & Mishra, R. (2015). Superplasticity.Reference Module in Materials Science and Materials Engineering, 8977-8981. doi:10.1016/B978-0-12-803581-8.02886-1.

5 Lu, J., & Lu, K. (2003). Surface Nano-crystallization (SNC) of Materials and its Effect on Mechanical Behavior. Comprehensive Structural Integrity, 495-528. doi:10.1016/b0-08-043749-4/08037-x.

6 Xu, H., & Wu, J. (2011). New materials, technologies and processes in thermal bar-rier coatings. Thermal Barrier Coatings, 317-328. doi:10.1533/9780857090829.3.317.

7 Meyers, M., Mishra, A., & Benson, D. (2006). Mechanical properties of Nan-ocrystalline materials. Progress in Materials Science, 51(4), 427-556. doi:10.1016/j.pmatsci.2005.08.003.

8 Terence Musho; Greg Walker (2015), “Thermoelectric Power Factor Calculator for Nano-crystalline Composites,” https://nanohub.org/resources/nccpf. (DOI: 10.4231/D34746S5H).

9 Rouse, M. (2008, June). What is Nano-crystal? – Definition from WhatIs.com. Re-trieved from https://whatis.techtarget.com/definition/nanocrystal.

10 Wikipedia. (2018, March 23). Nano-crystalline material.Retrieved from https://en.wikipedia.org/wiki/Nanocrystalline_material.

11 Chani MTS, Karimov KS, Asiri AM, Ahmed N, Bashir MM, Khan SB, et al. (2014) Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite. PLoS ONE 9(4): e95287. https://doi.org/10.1371/journal.pone.0095287.

12 Nielsch, K., Bachmann, J., Kimling, J., &Böttner, H. (2011). Thermoelectric Nano-structures: From Physical Model Systems towards Nanograined Composites. Advanced Energy Materials, 1(5), 713-731. doi:10.1002/aenm.201100207.

13 Dubey, N., & Leclerc, M. (2011). Conducting polymers: Efficient thermoelectric ma-terials. Journal of Polymer Science Part B: Polymer Physics, 49(7), 467-475. doi:10.1002/polb.22206.

14 Sootsman, J., Chung, D., &Kanatzidis, M. (2009). New and Old Concepts in Ther-moelectric Materials.AngewandteChemie International Edition, 48(46), 8616-8639. doi:10.1002/anie.200900598.

15 Szczech, J. R., Higgins, J. M., & Jin, S. (2011). Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem, 21(12), 4037-4055. doi:10.1039/c0jm02755c

AUTHOR’S AFFILIATION


MANU MITRA
Department of Electrical Engineering, Alumnus of University of Bridgeport, Brid-geport, US

Scroll to Top